Universal Strength in Steel

ArcelorMittal

Present in more than 60 countries and covering all major global markets (automotive, pipes, construction, household appliances, packaging etc), ArcelorMittal is a leading global force in steel operations. The company enjoys a commanding market position, thanks to its groundbreaking R&D and technology, sizeable captive supplies of raw materials and outstanding distribution networks.

All-round respect

ArcelorMittal’s primary focus is the health, safety and well-being of its employees and contractors, as well as the communities in which it operates. This firm commitment extends to the sustainable management of the environment and of finite resources, made possible through our continuous research and development of steel-based technologies and solutions that contribute, year after year, to minimising environmental impact.

ArcelorMittal Flat Carbon Europe

Owing to our wide range of products, covering everything from commodity items to highly alloyed solutions, ArcelorMittal Flat Carbon Europe (FCE) is proud to supply design-to-purpose solutions for virtually any of your steel applications.

Partner for life

We aim to keep our customers at the heart of our operations by reducing their overall costs and developing true long-term partnerships. Our client-oriented marketing philosophy determines our strategy, approach and support with regard to the different market segments.

Premium Steel for Oil & Gas Pipes

With over 30 years’ experience in producing steels for Oil & Gas welded pipes, ArcelorMittal Flat Carbon Europe supplies more than 450,000 metric tons of hot rolled steel coils each year to the global Oil & Gas Pipe industry.

Our customers form our steel strips to manufacture large-diameter pipes for hydrocarbon transportation in both sweet and sour conditions. ArcelorMittal’s steels have superior properties in order to meet the most stringent strength and toughness requirements.

The success of ArcelorMittal FCE is based on the long-established expertise of highly skilled teams operating at our three mills in Bremen (Germany), Fos-sur-Mer (France) and, more recently, Krakow (Poland).

From R&D to Production and from Supply to Customer Service, our people are dedicated to meeting the needs of our Energy customers. Oil & Gas Pipe manufacturers the world over rely on ArcelorMittal FCE to provide them with premium hot rolled steel coils.
Universal Strength in Steel

The experience and expertise of our people combined with up-to-date equipment are the core of what ArcelorMittal FCE has to offer.

Delivering Distinction

ArcelorMittal FCE delvers carbon steel coils to world-class Oil & Gas Pipe manufacturers on all five continents, whether the application is onshore or offshore, sweet or acid.

ArcelorMittal FCE aims to strongly engage with end users to meet their requirements in all types of environments.

Every year our customers transform 450,000 metric tons of our steel into API welded pipes.

ArcelorMittal FCE never forgets the essence of what it is all about.

Bremen and Fos-sur-Mer enjoy direct sea access, adjacent to the mills. This provides fast and easy shipment options whilst ensuring reliability to deliver regular and large quantities.

Per region (% of metric tons delivered)

- Europe 53
- Asia 20
- America 13
- Africa 11
- Middle East 3

Per facility (% of metric tons produced)

- Fos-sur-Mer 58
- Bremen 33
- Others 9

Per thickness (% of metric tons delivered)

- mm > 20 4
- mm 14-20 40
- mm <14 56

Per width (% of metric tons delivered)

- mm > 1800 6
- mm 1200-1800 84
- mm <1200 10

Per grade (% of metric tons delivered)

- X80 1
- X70 63
- X65 12
- X60 7
- Softer grades 11
- OCTG & Well Intervention 6

TOTAL 100

Direct sea access for fast and easy shipment solutions

Bremen and Fos-sur-Mer enjoy direct sea access, adjacent to the mills. This provides fast and easy shipment options whilst ensuring reliability to deliver regular and large quantities.

Our API steel product range is fully suitable for pipe forming. Depending on the processing method (ERW = Electric Resistance Welding; SAWH or SAWL = Submerged Arc Welding Helical or Longitudinal), we adjust the strip mechanical properties to match the pipe requirements (see more on page 16).

Pipe forming angle
- SAWH forming principle
- ERW forming principle
- Cooling
- Welding
- Forming
- Levelling
- Sizing
- Pipe
- Steel coil
- Pipe forming angle

30 years
Steel for Oil & Gas Pipes

Chapter: ArcelorMittal FCE - www.arcelormittal.com/industry
The Oil & Gas welded pipe industry requires a large variety of steels to accommodate the most severe conditions. Depending on the final application we offer three steel product families.

Line Pipe (API 5L, ISO 3183, EN 10208-2)

For pipeline transportation systems

- **Black Hot Rolled Steel Coils and Sheets**
 - Sweet and sour service
 - Any standard can be considered
- **API 5L**: Grade B to X80 (PSL1 and PSL2)
- **ISO 3183**: Grade B to X80
- **EN 10208-2**: L245MB to L555MB

OCTG (API 5CT)

A wide range of J55 grades, from low to high carbon levels

- **Black or Pickled & Oiled Hot Rolled Steel Coils**
- **API 5ST, A 606-T4, AISI 4130**
 - 20 years' experience of Well Intervention products

- **Pickled & Oiled Hot or Cold Rolled Steel Coils**

Drilling rig in the Eagle Ford shale play (Southern Texas)

SAWH API 5L pipes being inspected during the coating operation.

Drilled and oiled coils ready for overseas shipment (Fos-sur-Mer)
High strength grades
- Up to X80M-PSL2

Heavy thicknesses
- Up to 25.4 mm

Excellent toughness properties
- CVN and DWTT at low temperature

Large and reliable capacity
- Heavy-duty equipment
- 3 production facilities
- Regular dedicated investments
- Consistent quality and mechanical properties to secure medium and large-scale projects

Speciality products
- HIC-resistant grades for Sour service
- OCTG and Well Intervention grades
- Cut-to-length sheets

Tailored offering
Complex projects often have requirements over and above the standard. Furthermore, the characteristics of steel strips need to be adjusted to compensate for the change in mechanical properties between the as-delivered coil and the manufactured pipe (greatly influenced by the type of forming, the grade and the dimensions).

Our make-to-order strategy ensures that we meet our clients’ unique needs. Projects are only defined once a technical study of the client specification has been conducted for each steel grade x dimension x volume. The tables below give an indicative overview of our product range and dimensional feasibility.

Extensive Steel Product Range for API Pipes

Hot Rolled Steel Coils for Line Pipe applications (API 5L, ISO 3183, EN 10208-2)

<table>
<thead>
<tr>
<th>Steel grade</th>
<th>Width (mm)</th>
<th>Max thickness (mm)</th>
<th>Sour service</th>
</tr>
</thead>
<tbody>
<tr>
<td>API 5L (ISO 3183)</td>
<td>EN 10208-2</td>
<td>min</td>
<td>max</td>
</tr>
<tr>
<td>X80</td>
<td>L555</td>
<td>850</td>
<td>2146</td>
</tr>
<tr>
<td>X70</td>
<td>L485</td>
<td>850</td>
<td>2146</td>
</tr>
<tr>
<td>X65</td>
<td>L450</td>
<td>850</td>
<td>2146</td>
</tr>
<tr>
<td>X60</td>
<td>L415</td>
<td>850</td>
<td>2146</td>
</tr>
<tr>
<td>X52</td>
<td>L360</td>
<td>850</td>
<td>2146</td>
</tr>
</tbody>
</table>

We also supply cut-to-length sheets; please contact us.

Hot Rolled Steel Coils for welded Casing and Tubing Pipes (API 5CT)

<table>
<thead>
<tr>
<th>Steel grade</th>
<th>Width (mm)</th>
<th>%C</th>
</tr>
</thead>
<tbody>
<tr>
<td>J55</td>
<td>1.6 - 16</td>
<td>≤ 0.17</td>
</tr>
<tr>
<td>J55 N</td>
<td>1.6 - 16</td>
<td>≤ 0.21</td>
</tr>
<tr>
<td>K55</td>
<td>2.2 - 16</td>
<td>≤ 0.36</td>
</tr>
<tr>
<td>K55 (in development)</td>
<td>2.2 - 16</td>
<td>≤ 0.36</td>
</tr>
</tbody>
</table>

Hot Rolled Steel Coils for Well Intervention Pipes

<table>
<thead>
<tr>
<th>Standard</th>
<th>Thickness (mm)</th>
<th>Sour service</th>
<th>YS on pipe (ksi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>API 5ST</td>
<td>1.6 - 7</td>
<td>YES</td>
<td>55 to 120</td>
</tr>
<tr>
<td>A 606-14</td>
<td>1.6 - 7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>API 4130</td>
<td>on request</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

For higher carbon versions up to %C = 0.48: please contact us.

The extreme rolling speeds (up to 1200 m/min) require a combination of precise automatic control and human expertise.
Good steel starts with good slabs. ArcelorMittal’s steels for Oil & Gas Pipes are manufactured using advanced metallurgical processes to meet both sweet and sour service requirements through a design-to-purpose approach.

The process is constantly monitored and controlled via a supervision system that is independent of production. Cross-section characterisation tests of the full slab are performed by macro-etching to ensure a low level of central segregation.

The slabs are reheated and thermomechanically rolled with accelerated cooling to achieve the required thickness and homogeneous mechanical properties. ArcelorMittal’s steels have a fine and homogeneous microstructure, which ensures an optimised combination of strength and toughness.
Manufacturing both Oil & Gas and automotive products at the same mills requires us to continually monitor and challenge our quality performance.

Our 30 years of experience in the Oil & Gas industry is another key element in the quality and reliability of our deliveries. To ensure a secure supply, we aim to approve two of our facilities to produce large volumes to the same specification.

Whether handling a one-off steel batch or the manufacture of several thousand metric tons of steel in just a few months, ArcelorMittal FCE aims to ensure that product properties remain consistently reliable. By knowing the capabilities of our equipment and constantly acquiring new technical expertise, we can guarantee to supply you with the right product.

3 facilities in Europe

<table>
<thead>
<tr>
<th>Facilities</th>
<th>Blast Furnace</th>
<th>Steel shop</th>
<th>Continuous Caster</th>
<th>Thermomechanical hot rolling mill</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bremen</td>
<td>2 x BF</td>
<td>2 x LD</td>
<td>1 x CC x 2 strands</td>
<td>HSM 78.7'' 1'' DC installed in 2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RH degasser</td>
<td>3'' crop shear installed in 2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vertical-curved</td>
<td></td>
</tr>
<tr>
<td>Fos-sur-Mer</td>
<td>2 x BF</td>
<td>2 x LET</td>
<td>2 x CC x 2 strands</td>
<td>HSM 84.5'' 1'' DC installed in 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(340 t)</td>
<td>RH degasser</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STAD CAS-OB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vertical-curved</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CC#1 Relined in 2007</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Krakow</td>
<td>2 x BF</td>
<td>2 x LET</td>
<td>1 x CC - SR</td>
<td>HSM 80.3'' 1'' DC installed in 2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(340 t)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 x LF</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vertical-curved</td>
<td></td>
</tr>
</tbody>
</table>

BF: Blast Furnace
LET: Bottom Stirring
LD: Linz-Donawitz
STAD: Desulphurisation Station
CAS-OB: Argon Sealed atmosphere
LF: Ladle Furnace
RH degasser: vacuum circulation degasser
CC: Continuous Caster
SR: Soft Reduction
HSM: Hot Strip Mill
DC: Downcoiler
Our Steel-making Process
Step by Step

Converter and ladle metallurgy
From iron ore and coke selection to ladle metallurgy, we aim to fine-tune the final steel chemistry to ensure the soundness and mechanical properties of the final material. We particularly focus on ensuring an extra low phosphorous and sulphur content (below 20 ppm), while implementing calcium treatment to minimise the formation of harmful inclusions.

Continuous casting
The recently relined continuous casters are vertical-curved to ensure better inclusion decantation. They are also equipped with divided rolls to prevent bulging. Combined with a tundish flow control system, this greatly contributes to minimising central segregation, while full slab cross-section macro-etching is regularly performed as a standard control procedure.

Hot rolling
After reheating, the slabs are thermomechanically rolled to reach the required thickness and homogeneous mechanical properties. The aim is to achieve the targeted grain refinement (consistently finer than 8). This ensures an optimised combination of strength and toughness.

Powerful and sophisticated run-out tables make it possible to process everything from dual or multiphase thin steels for automotive applications to thick API steels. At Fos-sur-Mer, the abundant water flow reaches 400 m³/minute.

In 2011 the Bremen mill unveiled the world’s biggest crop shear. Capable of shearing up to 76 mm thick transfer bars prior to finish rolling, this new piece of equipment enables the production of slabs of greater thickness with improved toughness. This also opens up the possibility of creating innovative steel properties.
Meet your requirements for pipe mechanical properties

Steel strips are delivered with extra strength to compensate for the apparent loss in yield strength between the as-delivered steel coil and the manufactured pipe. The extent of this loss is greatly influenced by the type of forming (SAWH, SAWL, ERW), the grade and the dimensions. In the case of smaller diameters (usually ERW), the yield strength will actually increase on pipe.

Our process

Steel mechanical properties are obtained by a combination of chemistry and hot rolling parameters.

The water flow on the finishing stands of the rolling mill must remain laminar to ensure premium homogeneity of the mechanical properties. The shape of the nozzles is specifically designed to ensure uniform cooling.

Our steel

Mechanical Properties Prediction

To anticipate the drop in yield strength on large OD pipes, we have created a database and software that predict the mechanical properties on pipe, based on the dimensions and values on strip.

Our aim is therefore to ensure that our customers can reliably use our product and deliver to end users within the required project time frame. This also makes it possible to offer a cost-effective design-to-purpose package.

Comparison of the yield strength distribution on a 48" SAWH pipe (thickness = 13 mm) in X70M-PSL2 versus the initial strip properties. This enables the required mechanical properties on strip to be refined in order to meet pipe requirements.

Your product

Meeting the API strength requirements

Hydrotest on SAWH pipes. Making sure the minimum mechanical properties are achieved on the formed pipe is mandatory to comply with the pressure requirements.

Meet your most stringent toughness requirements on heavy walls

Achieving stringent toughness properties on high strength heavy wall strips is critical, since this is directly related to grain size and microstructure homogeneity throughout the thickness of the sheet. Dedicated low carbon chemistry, combined with finely tuned cooling during the hot rolling process, is mandatory.

Above 22 mm gauge, the final strip wall becomes too thick compared with the transfer bar thickness prior to finish rolling. In 2011 ArcelorMittal Bremen installed the world’s biggest crop shear, capable of cutting 76 mm thick bars.

Our process

Thermomechanically hot rolled steel. High reduction ratios combined with finely tuned cooling and dedicated chemistry.

Our steel

Fine grain microstructure, even on high strength & heavy wall strips

Comparison of the yield strength distribution on a 48" SAWH pipe (thickness = 13 mm) in X70M-PSL2 versus the initial strip properties. This enables the required mechanical properties on strip to be refined in order to meet pipe requirements.

Your product

Premium toughness properties

CVN impact test on X70M-PSL2 (transverse direction on coil)
Meet your sour and acid requirements

The presence of H₂S in Oil & Gas environments exposes steel to various forms of corrosion cracking. Hydrogen-Induced Cracking (HIC) and Sulphide Stress Corrosion Cracking (SSCC) are initiated at microscopic trap sites. It is therefore essential to reduce impurities. In this regard, the sulphur content has to be kept low and the microstructure must be extremely homogeneous, since any hard point or void would be a source of hydrogen embrittlement. Recent projects have also benefited from the use of HIC-resistant steels for CO₂ transportation.

Our process
HIC-resistant steel would not exist without the appropriate chemistry (low sulphur and phosphorus content and inclusion shape control by calcium treatment to reduce MnS precipitation). In addition, the casting and hot rolling parameters must be carefully designed and monitored.

- Vacuum degassing to reduce the gas content of steel
- Vertical-curved continuous casters with divided rolls
- Finely tuned thermomechanical rolling parameters to guarantee the absence of hard spots
- Coiling temperature monitoring

Our steel
By monitoring the successive process steps, we can offer a fine grain microstructure with a minimised banded pattern.

Sour and Acid Service

Microstructure of non-sour steel (X65M-PSL2) versus HIC-resistant steel (X65MS-PSL2). Thickness = 10 mm.

Low sulphur and phosphorus content in liquid steel is the initial requirement for sour and acid serviceability of the final pipe. We guarantee a maximum of 20 ppm of sulphur, and generally achieve half of this value.

Your product
We guarantee HIC resistance as per NACE TM0284 Solution A pH = 2.7 in our integrated testing laboratory at Fos-sur-Mer. SCC and CO₂ testing are also available.

The samples are placed in the H₂S rig for 96 hours.

The samples are UT inspected to make sure no cracks are missed.

If a crack is found, the sensitivity (CSR), length (CLR) and thickness (CTR) ratios are calculated.

www.arcelormittal.com/industry - ArcelorMittal Flat Carbon Europe - 19
OCAS is a joint venture between ArcelorMittal and the Flemish Region. With more than 140 engineers and technicians from 16 countries, the R&D lab develops new steel grades and steel processing solutions.

The main focus of its research activities is supporting the Oil & Gas Pipe market.

By developing heavy-gauge line pipe steels and OCTG grades:
- with higher strength;
- with improved toughness at low temperature;
- with sour corrosion resistance (HIC, SSCC).

By providing technical support for Oil & Gas customers:
- welding (SAW, HFI, girth welding);
- corrosion in sweet and sour environments;
- fracture mechanics and toughness (CTOD, BDWTT etc);
- numerical modelling (properties of structures);
- failure and damage analysis.

Our dedicated API pipe team and state-of-the-art equipment are now brought together at the Metal Structures Centre, located in Ghent.

Recently (2011) installed SAW equipment in Zwijnaarde (Ghent) BDWTT testing and modelling. OCAS has the ability to measure the energy level effectively reached during testing.

Safety comes first. (Bremen and Fos-sur-Mer are OHSAS-certified).
Quality is our mindset.
Confidentiality is our daily concern.
Mutual understanding and regular direct communication are the baseline for optimum technical collaboration.

These four principles are the core values of ArcelorMittal Flat Carbon Europe.
We are always ready to assist with any questions regarding Steel for Oil & Gas Pipes and are open to collaborative partnerships with our customers to find unique solutions. Over the past 30 years, ArcelorMittal FCE has built up an Oil & Gas centre of excellence, staffed by metallurgists, welding technicians and engineers, most of whom have recognised skills in tubular applications. Our specialised team can provide detailed feasibility studies for specific projects as well as technical support on any pipe-related issues.

Example 1 - New design-to-purpose steel for CO₂ transportation

ArcelorMittal Flat Carbon Europe supplied the steel used for the Denbury-Greencore project in the USA. This 232 mile long pipeline is designed to transport CO₂ for enhanced oil recovery projects. CO₂ becomes extremely corrosive in the presence of water or impurities. As a consequence, several CO₂ transportation pipeline projects are now requiring acid-resistant steel. Fos-sur-Mer supplied 58 kt of HR steel coils (X70M-PSL2) to Corinth Pipeworks (Greece), which manufactured the 20” OD pipes using high frequency electric resistance welding. Every single casting complied with the NACE TM0284 A requirement, with great consistency.

Example 2 – Heat Affected Zone Analysis (HFW)

We analysed the weld of a 14 mm thick HFW pipe (X65M-PSL2) to evaluate the grain size and orientation of the bond line (BL), located in the middle of the weld profile. The weld microstructure was then correlated with the toughness of the BL.

Although the hardness variations are not necessarily correlated with the toughness properties, the results confirmed that the grain orientation would be a more determinant factor. The less the grains are oriented in a single preferred direction, the better the toughness. The study showed that the grain orientation tends to go back to a more mixed pattern (with less preferred orientation) after the post-welding heat treatment, thus offering higher ductility than the case shown in picture 3.

Bremen and Fos-sur-Mer are ISO TS 16949, ISO 14001, ISO 9001 and OHSAS 18001 certified

Going greener

Steel and the term ‘environmentally friendly’ may not seem to go hand in hand. However, we are fully committed to reducing each year the impact that our steel manufacturing activities have on the environment.

Facts

• ISO 14001 certification of our three plants.
• 50% of the Fos-sur-Mer site is dedicated as green space.
• Daily efforts to produce the finest steel possible, resulting in a greatly reduced sensitivity to atmospheric, sour and acid corrosion compared with commodity steel, which in turn has a positive impact on human and environmental safety during final product usage.

You deserve premium technical support

Your certified partner
Examples of projects

They used our steel

<table>
<thead>
<tr>
<th>Project Description</th>
<th>Country</th>
<th>End user</th>
<th>Pipe processing</th>
<th>Dimensions</th>
<th>Grade</th>
<th>Customer</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCOP Crude oil pipeline (24")</td>
<td>Turkey</td>
<td>End user: SCOP</td>
<td>Pipe processing: SAWH</td>
<td>1800 x 11.1 mm</td>
<td>APIX70-PSL2</td>
<td>Production plant: Bremen</td>
<td>Delivers: 2010</td>
</tr>
<tr>
<td>SCOP crude oil pipeline (34", 40", 42")</td>
<td>Turkey</td>
<td>End user: SCOP</td>
<td>Pipe processing: SAWH</td>
<td>1700 x 13.08 and 13.13 mm</td>
<td>APIX70-PSL2</td>
<td>Production plant: Bremen</td>
<td>Delivers: 2010</td>
</tr>
<tr>
<td>TIGF pipeline (32" and 36")</td>
<td>France</td>
<td>End user: TOTAL – TIGF (France)</td>
<td>Pipe processing: SAWH</td>
<td>1520 x 14.7 mm</td>
<td>APIX70-PSL2</td>
<td>Production plant: Fos-sur-Mer, Bremen</td>
<td>Delivers: 2008-2010</td>
</tr>
<tr>
<td>TIGF gas system pipeline (36")</td>
<td>France</td>
<td>End user: Spectra Energy (TX)</td>
<td>Pipe processing: SAWH</td>
<td>1598 x 11.1 mm</td>
<td>APIX70-PSL2</td>
<td>Production plant: Fos-sur-Mer</td>
<td>Delivers: 2010-2011</td>
</tr>
<tr>
<td>Transgas Gas Pipeline 300 Line Expansion (36")</td>
<td>Turkey</td>
<td>End user: El Paso, USA</td>
<td>Pipe processing: SAWH</td>
<td>1500 x 8.86 mm</td>
<td>APIX70-PSL2</td>
<td>Production plant: Fos-sur-Mer</td>
<td>Delivers: 2009</td>
</tr>
<tr>
<td>TIGF gas system pipeline (36")</td>
<td>France</td>
<td>End user: Spectra Energy (TX)</td>
<td>Pipe processing: SAWH</td>
<td>1700 x 13.08 and 13.23 mm</td>
<td>APIX70-PSL2</td>
<td>Production plant: Fos-sur-Mer</td>
<td>Delivers: 2010-2011</td>
</tr>
<tr>
<td>Al Giqbal Block S2 pipeline (16")</td>
<td>Yemen</td>
<td>End user: OVM Exploration</td>
<td>Pipe processing: SAWH</td>
<td>1262 x 9.53 mm</td>
<td>APIX65-PSL2</td>
<td>Production plant: Fos-sur-Mer, Bremen</td>
<td>Delivers: 2008-2009</td>
</tr>
<tr>
<td>Algerian gas system pipeline (36")</td>
<td>Algeria</td>
<td>End user: Siderúrgica del Tubo Soldado (Spain)</td>
<td>Pipe processing: SAWH</td>
<td>1700 x 13.08 and 14.82 mm</td>
<td>APIX70-PSL2</td>
<td>Production plant: Fos-sur-Mer, Bremen</td>
<td>Delivers: 2009</td>
</tr>
<tr>
<td>HWE Breagh offshore gas pipeline (20")</td>
<td>UK</td>
<td>End user: RWE Daq UK</td>
<td>Pipe processing: SAWH</td>
<td>1760 x 13.08 and 14.82 mm</td>
<td>APIX70-PSL2</td>
<td>Production plant: Fos-sur-Mer, Bremen</td>
<td>Delivers: 2010</td>
</tr>
<tr>
<td>Baku-Tbilisi-Ceyhan sour service oil pipeline (32")</td>
<td>Azerbaijan, Georgia and Turkey</td>
<td>End user: Turkish Pipe Consortium</td>
<td>Pipe processing: SAWH</td>
<td>1020 x 12.7 mm</td>
<td>APIX52-PSL2</td>
<td>Production plant: Fos-sur-Mer, Bremen</td>
<td>Delivers: 2009</td>
</tr>
<tr>
<td>GR4 pipeline (48")</td>
<td>Algeria</td>
<td>End user: Sonatrach, Algeria</td>
<td>Pipe processing: SAWH</td>
<td>1150 x 14.7 mm</td>
<td>APIX70-PSL2</td>
<td>Production plant: Fos-sur-Mer, Bremen</td>
<td>Delivers: 2010</td>
</tr>
<tr>
<td>TIGF gas system pipeline (36")</td>
<td>France</td>
<td>End user: Spectra Energy (TX)</td>
<td>Pipe processing: SAWH</td>
<td>1800 x 14.7 mm</td>
<td>APIX70-PSL2</td>
<td>Production plant: Fos-sur-Mer, Bremen</td>
<td>Delivers: 2008-2010</td>
</tr>
<tr>
<td>Al Salik asphalt pipeline (36")</td>
<td>Malaysia</td>
<td>End user: Petronas, Malaysia</td>
<td>Pipe processing: SAWH</td>
<td>1600 x 16.27 and 14.23 mm</td>
<td>APIX70-PSL2</td>
<td>Production plant: Fos-sur-Mer, Bremen</td>
<td>Delivers: 2008-2009</td>
</tr>
<tr>
<td>Al-Uqlah Block S2 pipeline (16")</td>
<td>Yemen</td>
<td>End user: OVM Exploration</td>
<td>Pipe processing: SAWH</td>
<td>1262 x 9.53 mm</td>
<td>APIX65-PSL2</td>
<td>Production plant: Fos-sur-Mer, Bremen</td>
<td>Delivers: 2008-2009</td>
</tr>
<tr>
<td>Al Ghul Block S2 pipeline (16")</td>
<td>Yemen</td>
<td>End user: OVM Exploration</td>
<td>Pipe processing: SAWH</td>
<td>1262 x 9.53 mm</td>
<td>APIX65-PSL2</td>
<td>Production plant: Fos-sur-Mer, Bremen</td>
<td>Delivers: 2008-2009</td>
</tr>
<tr>
<td>Haynesville-Acadia gas pipeline (36" and 42")</td>
<td>USA</td>
<td>End user: Enterprise Products Partners L.P.</td>
<td>Pipe processing: SAWH</td>
<td>1700 x 13.08 and 13.23 mm</td>
<td>APIX70-PSL2</td>
<td>Production plant: Fos-sur-Mer, Bremen</td>
<td>Delivers: 2010-2011</td>
</tr>
<tr>
<td>Al-Ghul Block S2 (16")</td>
<td>Yemen</td>
<td>End user: OVM Exploration</td>
<td>Pipe processing: SAWH</td>
<td>1262 x 9.53 mm</td>
<td>APIX65-PSL2</td>
<td>Production plant: Fos-sur-Mer, Bremen</td>
<td>Delivers: 2008-2009</td>
</tr>
<tr>
<td>Al-Uqlah Block S2 (16")</td>
<td>Yemen</td>
<td>End user: OVM Exploration</td>
<td>Pipe processing: SAWH</td>
<td>1262 x 9.53 mm</td>
<td>APIX65-PSL2</td>
<td>Production plant: Fos-sur-Mer, Bremen</td>
<td>Delivers: 2008-2009</td>
</tr>
<tr>
<td>Al Ghul Block S2 (16")</td>
<td>Yemen</td>
<td>End user: OVM Exploration</td>
<td>Pipe processing: SAWH</td>
<td>1262 x 9.53 mm</td>
<td>APIX65-PSL2</td>
<td>Production plant: Fos-sur-Mer, Bremen</td>
<td>Delivers: 2008-2009</td>
</tr>
<tr>
<td>Al-Ghul Block S2 (16")</td>
<td>Yemen</td>
<td>End user: OVM Exploration</td>
<td>Pipe processing: SAWH</td>
<td>1262 x 9.53 mm</td>
<td>APIX65-PSL2</td>
<td>Production plant: Fos-sur-Mer, Bremen</td>
<td>Delivers: 2008-2009</td>
</tr>
<tr>
<td>QG4 pipeline (48")</td>
<td>Algeria</td>
<td>End user: Sonatrach, Algeria</td>
<td>Pipe processing: SAWH</td>
<td>1700 x 13.08 and 14.82 mm</td>
<td>APIX70-PSL2</td>
<td>Production plant: Fos-sur-Mer, Bremen</td>
<td>Delivers: 2009</td>
</tr>
<tr>
<td>TIGF gas system pipeline (36")</td>
<td>France</td>
<td>End user: Spectra Energy (TX)</td>
<td>Pipe processing: SAWH</td>
<td>1760 x 13.08 and 14.82 mm</td>
<td>APIX70-PSL2</td>
<td>Production plant: Fos-sur-Mer, Bremen</td>
<td>Delivers: 2008-2009</td>
</tr>
<tr>
<td>GR4 pipeline (48")</td>
<td>Algeria</td>
<td>End user: Sonatrach, Algeria</td>
<td>Pipe processing: SAWH</td>
<td>1700 x 13.08 and 14.82 mm</td>
<td>APIX70-PSL2</td>
<td>Production plant: Fos-sur-Mer, Bremen</td>
<td>Delivers: 2009</td>
</tr>
<tr>
<td>Al-Uqlah Block S2 pipeline (16")</td>
<td>Yemen</td>
<td>End user: OVM Exploration</td>
<td>Pipe processing: SAWH</td>
<td>1262 x 9.53 mm</td>
<td>APIX65-PSL2</td>
<td>Production plant: Fos-sur-Mer, Bremen</td>
<td>Delivers: 2008-2009</td>
</tr>
<tr>
<td>Al-Ghul Block S2 (16")</td>
<td>Yemen</td>
<td>End user: OVM Exploration</td>
<td>Pipe processing: SAWH</td>
<td>1262 x 9.53 mm</td>
<td>APIX65-PSL2</td>
<td>Production plant: Fos-sur-Mer, Bremen</td>
<td>Delivers: 2008-2009</td>
</tr>
<tr>
<td>Haynesville-Acadia gas pipeline (36" and 42")</td>
<td>USA</td>
<td>End user: Enterprise Products Partners L.P.</td>
<td>Pipe processing: SAWH</td>
<td>1700 x 13.08 and 13.23 mm</td>
<td>APIX70-PSL2</td>
<td>Production plant: Fos-sur-Mer, Bremen</td>
<td>Delivers: 2010-2011</td>
</tr>
<tr>
<td>Al-Ghul Block S2 (16")</td>
<td>Yemen</td>
<td>End user: OVM Exploration</td>
<td>Pipe processing: SAWH</td>
<td>1262 x 9.53 mm</td>
<td>APIX65-PSL2</td>
<td>Production plant: Fos-sur-Mer, Bremen</td>
<td>Delivers: 2008-2009</td>
</tr>
<tr>
<td>TIGF gas system pipeline (36")</td>
<td>France</td>
<td>End user: Spectra Energy (TX)</td>
<td>Pipe processing: SAWH</td>
<td>1760 x 13.08 and 14.82 mm</td>
<td>APIX70-PSL2</td>
<td>Production plant: Fos-sur-Mer, Bremen</td>
<td>Delivers: 2009</td>
</tr>
<tr>
<td>TIGF gas system pipeline (36")</td>
<td>France</td>
<td>End user: Spectra Energy (TX)</td>
<td>Pipe processing: SAWH</td>
<td>1760 x 13.08 and 14.82 mm</td>
<td>APIX70-PSL2</td>
<td>Production plant: Fos-sur-Mer, Bremen</td>
<td>Delivers: 2009</td>
</tr>
<tr>
<td>Al-Ghul Block S2 (16")</td>
<td>Yemen</td>
<td>End user: OVM Exploration</td>
<td>Pipe processing: SAWH</td>
<td>1262 x 9.53 mm</td>
<td>APIX65-PSL2</td>
<td>Production plant: Fos-sur-Mer, Bremen</td>
<td>Delivers: 2008-2009</td>
</tr>
<tr>
<td>Haynesville-Acadia gas pipeline (36" and 42")</td>
<td>USA</td>
<td>End user: Enterprise Products Partners L.P.</td>
<td>Pipe processing: SAWH</td>
<td>1700 x 13.08 and 13.23 mm</td>
<td>APIX70-PSL2</td>
<td>Production plant: Fos-sur-Mer, Bremen</td>
<td>Delivers: 2010-2011</td>
</tr>
</tbody>
</table>

ArcelorMittal Flat Carbon Europe – with mills dedicated to the Oil & Gas Pipe industry in Germany, France, and Poland – serves the global API pipe market together with our divisions in the USA and Brazil.
ArcelorMittal Flat Carbon Europe engages a global workforce with local presence in 40 countries with the daily support of ArcelorMittal International.

Our widespread network allows us to provide our customers with the expertise they need it, wherever they may be.

Ecuador
ArcelorMittal International
Av. Pampa 57/H Comp. Chimbote Centro Comercial La Esquina, Oficina 5 Cumbaya, Quito, Ecuador
F. +593-2-289 6315 / 2764 / 2164
T. +593-2-289 4071
ami-ecuador@arcelormittal.com

Egypt
ArcelorMittal International
Unit 1 Building no.15
Road no. 254
11720 Giza
Arab Republic – Cairo, Egypt
F. +2010 090 2122
ami.alexandria@arcelormittal.com

India
ArcelorMittal International
Mumbai
201, Santorin
Herandapuri Carona
PUNE
Mumbai-400076, India
F. +91 22 2426 1516
T. +91 22 2426 1546
subodh.shah@arcelormittal.com
ami-india@arcelormittal.com

Indonesia
ArcelorMittal International
Granda inhabited in building, 6th floor
Jakarta inhabited in building No. 116,
Kebonrejo Bantul, Jakarta Selatan
21201, Indonesia
F. +62 21 2278 3706
T. +62 21 2278 3707
ami-indonesia@arcelormittal.com

Iran
ArcelorMittal International
Mashhad
Bolbolah Ondokhty Street, 4 building 4
110 007 Mashhad
Khorasan
F. +98 772101 15
T. +98 772101 25
ami-mashhad@arcelormittal.com

Jordan
ArcelorMittal International
Hashemite Kingdom of Jordan
F. +962 77571720
T. +962 77571732
ami-jordan@arcelormittal.com

Korea
ArcelorMittal International
B-37 taillon tripole, 1, Gumgok-dong, Bungando-gu, Sungang-eup
Kyungdo-dong, Post Code 43084
F. +82 32 715 2242
T. +82 32 715 2143
ami-korea@arcelormittal.com

Luxembourg
ArcelorMittal International
19, avenue de la Liberté
1562 Luxembourg
F. +352 49 07 49
T. +352 4792 1
ami-luxembourg@arcelormittal.com

Mexico
ArcelorMittal International
Col. Paloma de los Independientes 1
CP 76100, Querétaro, Qro.
F. +52 442 218 6691
T. +52 442 218 6872
ami-mexico@arcelormittal.com

Nigeria
ArcelorMittal International
11 Adaobi Doherty street of Admiralty way
Lagos/Phase I, Lagos, Nigeria
F. +234 213 002
T. +234 213 003

Peru
ArcelorMittal International
Colle Miguel Oscosino 145
Lima 30
Peru
F. +51 421 63 94
T. +51 421 63 38
ami-peru@arcelormittal.com

Philippines
ArcelorMittal International
48 F15 Yango Centre
Pasay de Magallanes Commercial
Magallanes Village, Makati City 1210
Philippines
F. +63 2 85129297
T. +63 2 85129766
ami-philippines@arcelormittal.com

Russia
ArcelorMittal International
Moscow
Bolshaya Oktyabrskaya Street, 24, building 4
119 017 Moscow
Moscow
F. +7 495 721 15 55
T. +7 495 721 15 56
ami-russia@arcelormittal.com

Thailand
ArcelorMittal International
2889/1, 17th Floor,
Home Group Office Building, 10th floor,
Sukhumvit 55, Sukhumvit Road, Wattana District
Bangkok 10110, Thailand
F. +66 2 741 2000
T. +66 2 741 3000
ami-thailand@arcelormittal.com

United Arab Emirates
ArcelorMittal International
20 Waly (Dhaya) Street, P.O. Box 4234,
Dubai, United Arab Emirates
F. +971 4 881 6662
T. +971 4 881 6661
ami-dubai@arcelormittal.com

United Kingdom
ArcelorMittal International
27 Southwark Bridge Road,
London SE1 1AH, UK
F. +44 20 3451 2900
T. +44 20 3451 2900
ami-london@arcelormittal.com

United States of America
ArcelorMittal International
North America
1 South Dearborn, 13th floor
Chicago, IL, 60601, USA
F. +1 312 899 3800
T. +1 312 899 3500
ami-america@arcelormittal.com

Venezuela
ArcelorMittal International
Edificio Kaiser, Avenida Yanare Cruz, Post 4, Oficinas 45-55
Las Mercedes/Caracas 0100, Venezuela
F. +58 212 933 45 00 / 991 41 97
T. +58 212 924 13 46
ami-venezuela@arcelormittal.com

Vietnam
ArcelorMittal International
123-14 Sansong, 3rd floor
No 898, Dien Bien Phu Street, Ba Dinh District
Hanoi 100000, Vietnam
F. +84 4 324 2975
T. +84 4 324 2973
ami-vietnam@arcelormittal.com

All rights reserved. No part of this publication may be reproduced in any form or by any means whatsoever, without prior written permission from ArcelorMittal Care has been taken to ensure that the information in this publication is accurate, but the information is not contractural. Therefore ArcelorMittal and any other ArcelorMittal Group company do not accept any liability for errors or omissions or any information that is found to be misleading. As this document may be subject to change at any time, please consult the latest information in the product document centre at www.arcelormittal.com/industry

Copyright